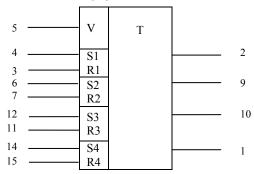


ЭТИКЕТКА


УП3.487.372 ЭТ

Микросхема интегральная 564 ТР2В Функциональное назначение – Четыре триггера – RS

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Выход Q4	9	Выход Q2
2	Выход Q1	10	Выход Q3
3	Вход R1	11	Вход R3
4	Вход S1	12	Вход S3
5	Вход V	13	Не используется
6	Вход S2	14	Вход S4
7	Вход R2	15	Вход R4
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = (25 \pm 10) °C) Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, В, при: $U_{CC} = 5$ В, 10 В	U _{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B	Uoн	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5$ B, $U_{IL}=1,5$ B, $U_{IH}=3,5$ B $U_{CC}=10$ B, $U_{IL}=3,0$ B, $U_{IH}=7,0$ B	U _{OL max}	-	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U_{OHmin}	4,2 9,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B \\ U_{CC} = 10 \; B$	I_{OL}	0,5 1,0	-
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	I_{OH}	/-0,5/ /-1,0/	- -

Продолжение таблицы 1				
1	2	3	4	
9. Ток потребления, мкА, при:				
$U_{CC} = 5 B$	I_{CC}	-	1,0	
$U_{\rm CC} = 10 \mathrm{B}$	icc	-	2,0	
$U_{CC} = 15 B$		-	4,0	
10. Выходной ток низкого уровня в состоянии «выключено», мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{OZL}	-	0,1	
11. Выходной ток высокого уровня в состоянии «выключено», мкА, при: $U_{\rm CC}$ = 15 В	I_{OZH}	-	/-0,1/	
12. Время задержки распространения сигнала при включении				
(выключении), нС, при:	$t_{ m PHL}$			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ n}\Phi$	(t _{PLH})	-	600	
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	300	
13. Входная емкость, п Φ , при: $U_{CC} = 10 \; B$	C _I	-	8,0	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г,

серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C - не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11 \ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

По применению, установленных 13. Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ТР2В соответствуют техническим условиям 6К0.347.064 ТУ8 и признаны годными для эксплуатации.

Приняты по(извещение, акт и ,	др.) ОТ (дата)	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепрове	ерка произведена	(дата)
Приняты по (извещение, акт и д	цр.) ОТ (дата)	_
Место для штампа ОТК		Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.